Steinberg Groups for Jordan Pairs

Erhard Neher
University of Ottawa

August 2019

References:

(1) O. Loos and E. Neher, Steinberg groups for Jordan pairs, C. R. Math. Acad. Sci. Paris 348 (2010), 839-842.
(3) O. Loos and E. Neher, Steinberg groups for Jordan pairs, Progress in Mathematics, Birkhäuser, to appear
(3) E. Neher, Steinberg groups for Jordan pairs - an introduction with open problems, arXiv:1901.01313

Universal central extensions

G abstract group

Definition (Schur)

- Central extension (=ce) $p: E \rightarrow G$ surjective group homomorphism, $\operatorname{Ker}(p)$ central
- universal central extension (= uce)
(1) $\hat{p}: \hat{G} \rightarrow G$ is ce, and
(2) for $p: E \rightarrow G$ ce there exists unique $f: \hat{G} \rightarrow E, p \circ f=\hat{p}$:

- G centrally closed if Id: $G \rightarrow G$ is uce, i.e., $E \stackrel{\text { ce }}{\prec} G$

Schur: projective representations of finite groups

uce facts

Steinberg, Yale notes
G group: $\quad[g, h]=g h g^{-1} h^{-1}, \quad[G, G]=\langle[g, h]: g, h \in G\rangle$
(1) uce unique, up to unique isomorphism
(2) G has a uce $\Longleftrightarrow G=[G, G]$, i.e., G perfect
(0) $\hat{p}: X \rightarrow G$ is a uce \Longleftrightarrow
(i) X is centrally closed (no condition on G !)
(ii) $p: X \rightarrow G$ is a ce

Corollary of (3): Strategy to find uce

uce example

F field

$$
\begin{aligned}
\mathrm{SL}_{n}(F) & =\left\{X \in \operatorname{Mat}_{n}(F): \operatorname{det}(X)=1\right\}=\left\langle e_{i j}(a): 1 \leq i \neq j \leq n, a \in F\right\rangle \\
\mathrm{e}_{i j}(a) & =\mathbf{1}_{n}+a E_{i j}
\end{aligned}
$$

linear Steinberg group $\mathrm{St}_{n}(F)$ presented by generators $x_{i j}(a), 1 \leq i \neq j \leq n, a \in F$, relations ($a, b \in F$)

$$
\begin{aligned}
x_{i j}(a) x_{i j}(b) & =x_{i j}(a+b) \\
{\left[x_{i j}(a), x_{k l}(b)\right] } & =1 \quad \text { if } j \neq k \text { and } I \neq i, \\
{\left[x_{i j}(a), x_{j l}(b)\right] } & =x_{i l}(a b) \quad \text { if } i, j, I \neq .
\end{aligned}
$$

Theorem (Steinberg 1962)

If $n \geq 4$, then $\mathrm{St}_{n}(F) \rightarrow \mathrm{SL}_{n}(F), x_{i j}(a) \mapsto \mathrm{e}_{i j}(a)$ is a uce.

In general $\mathrm{St}_{n}(F) \rightarrow \mathrm{SL}_{n}(F)$ is not an isomorphism!

Generalizations

Recall Steinberg's Theorem: $\mathrm{St}_{n}(F) \rightarrow \mathrm{SL}_{n}(F), n \geq 4$, is a uce

Generalizations

This theorem holds grosso modo in more generality:

- (Steinberg 1962) replace $\mathrm{SL}_{n}(F)$ by any Chevalley group, rephrase relations in terms of root systems
- (Stein 1972) replace $\mathrm{SL}_{n}(F)$ by Chevalley groups over commutative rings
- (Deodhar 1978) replace $\mathrm{SL}_{n}(F)$ by F-points of a quasi-split algebraic group
- (Kervaire-Milnor-Steinberg $1967 / 1971$) in $\mathrm{St}_{n}(F)$ replace F by any ring,
- (Bak 1981) elementary unitary groups: rings with involutions (form rings), types B, C, D

Kervaire-Milnor-Steinberg Theorem

A ring, define $\mathrm{St}_{n}(A)$ by presentation of $\mathrm{St}_{n}(F), F$ field: generators $x_{i j}(a), 1 \leq i \neq j \leq n, a \in A$, relations ($a, b \in A$)

$$
x_{i j}(a) x_{i j}(b)=x_{i j}(a+b)
$$

$$
\left[\mathrm{x}_{i j}(a), \mathrm{x}_{k l}(b)\right]=1 \quad \text { if } j \neq k \text { and } I \neq i
$$

$$
\left[\mathrm{x}_{i j}(a), x_{j l}(b)\right]=\mathrm{x}_{i l}(a b) \quad \text { if } i, j, I \neq
$$

$\mathrm{E}_{n}(A)=\left\langle\mathrm{e}_{i j}(a)=\mathbf{1}_{n}+a E_{i j}, a \in A, 1 \leq i \neq j \leq n\right\rangle$, elementary linear group
Recall $\hat{p}: X \rightarrow G$ is a uce \Longleftrightarrow (i) X is centrally closed (= its own uce) and (ii) $\hat{p}: X \rightarrow G$ is a ce.

Theorem (KMS)

A arbitrary ring,
(a) $\mathrm{St}_{n}(A), n \geq 5$, is centrally closed.
(b) If $\mathrm{St}_{n}(A) \rightarrow \mathrm{E}_{n}(A), \mathrm{x}_{i j}(a) \mapsto \mathrm{e}_{i j}(a)$, is a ce, then it is a uce.

This is so in the "stable" case:

$$
1 \rightarrow \mathrm{~K}_{2}(A) \rightarrow \xrightarrow{\lim } \mathrm{St}_{n}(A) \rightarrow \xrightarrow{\lim } \mathrm{E}_{n}(A) \rightarrow 1
$$

$\mathrm{St}_{n}(A) \rightarrow \mathrm{E}_{n}(A)$ is not a central extension in general

Main result of [Loos-N.]

Theorem

Let
(i) $\left(R, R_{1}\right)$ be a locally finite irreducible 3-graded root system of rank ≥ 5,
(ii) V a Jordan pair with a fully idempotent root grading \mathfrak{R}.

Then
(a) the Steinberg group $\operatorname{St}(V, \mathfrak{R})$ is centrally closed.
(b) If the canonical map $\operatorname{St}(V, \mathfrak{R}) \rightarrow \mathrm{PE}(V)$ (= projective elementary group of V) is a ce, then it is a uce. This is so if $\operatorname{rank} R=\infty$

Some advantages:
(1) unified approach to linear and unitary Steinberg groups
(2) new techniques, less relations
(3) covers all known results, except split groups of type $\mathrm{G}_{2}, \mathrm{~F}_{4}, \mathrm{E}_{8}$, applies to new groups.
holds more generally: some rank 4, replace "fully"

Locally finite root systems $=$ Ifrs

Ifrs $=\underline{\text { lim }}($ finite root systems +0$)$ with respect to embeddings
Equivalent definition (à la Bourbaki): replace "finite" by "locally finite": $R \subset X$ such that $|R \cap Y|<\infty$ for every finite-dimensional subspace of X.
Rank of $R=\operatorname{dim} X$
irreducible Ifrs $=\underline{\text { lim }}$ (irreducible finite root systems)
Equivalent: R is not a direct sum of two non-zero root systems
Examples: Infinite rank generalizations of classical root systems, e.g., $\mathrm{A}_{I}=\left\{\epsilon_{i}-\epsilon_{j}: i, j \in \hat{I}\right\}, \hat{l}=\boldsymbol{\jmath} \dot{U}\{\star\}$ $\mathrm{B}_{I}=\left\{ \pm \epsilon_{i}: i \in I\right\} \cup\left\{ \pm\left(\epsilon_{i}+\epsilon_{j}\right): i, j \in I, i \neq j\right\} \cup\left\{\epsilon_{i}-\epsilon_{j}: i, j \in I\right\}$

Classification (Kaplansky-Kibler 1973/75) irreducible Ifrs $=$ finite irreducible root system or isomorphic to $A_{l}, B_{l}, C_{l}, D_{l}, B C_{l},|I|=\infty$.

3-graded locally finite root systems

3-grading $=\mathbb{Z}$-grading of Ifrs R with support $\pm 1,0$.
Precise definition: decomposition $R=R_{1} \cup R_{0} \cup \dot{U} R_{-1}$ satisfying

$$
R_{-1}=-R_{1}, \quad\left(R_{i}+R_{j}\right) \cap R \subset R_{i+j}, \quad R_{0}=\left(R_{1}+R_{-1}\right) \cap R .
$$

Notation (R, R_{1})
Example 3-gradings of $R=\mathrm{A}_{n-1}=\left\{\epsilon_{i}-\epsilon_{j}: 1 \leq i, j \leq n\right\}, p+q=n$

$$
R_{1}=\left\{\epsilon_{1}-\epsilon_{p+j}: 1 \leq i \leq p, 1 \leq j \leq q\right\}
$$

Facts:

(1) 3-gradings of R respect decomposition of R into irreducible components
(2) An irreducible Ifrs R has a 3-grading $\Longleftrightarrow R$ is reduced $\left(\neq \mathrm{BC}_{1}\right)$ and not of type G_{2}, F_{4}, E_{8}.
(0) R finite irreducible: ω minuscule coweight, $R_{1}=\{\alpha \in R: \omega(\alpha)=1\}$; every 3 -grading of R of this type.

We now know assumption (i) of main theorem: (R, R_{1}) is a locally finite irreducible 3-graded root system of rank ≥ 5,

Jordan pairs

k commutative ring
Jordan pair over k : $V=\left(V^{+}, V^{-}\right)$pair of k-modules together with maps

$$
Q^{\sigma}: V^{\sigma} \times V^{-\sigma} \rightarrow V^{\sigma}, \quad(x, y) \mapsto Q^{\sigma}(x) y=Q_{x} y, \quad(\sigma= \pm),
$$

quadratic in x and linear in y, satisfying certain identities.
Linearize $Q(x) y$ in x gives $Q_{x, z} y=Q(x, z) y=Q_{x+z} y-Q_{x} y-Q_{z} y$, define Jordan triple product

$$
\{\cdots\}: V^{\sigma} \times V^{-\sigma} \times V^{\sigma} \rightarrow V^{\sigma}, \quad(x, y, z) \mapsto\{x y z\}=Q_{x, z} y .
$$

so $\{x y x\}=2 Q_{x} y$.

Examples

(1) (Subpair) V Jordan pair, $S=\left(S^{+}, S^{-}\right) \subset V$ such that $Q\left(S^{\sigma}\right) S^{-\sigma} \subset S^{\sigma}$,
(2) A associative k-algebra, $V=(A, A), Q_{x} y=x y x,\{x y z\}=x y z+z y x$,

- Combine (1) and (2)

Jordan pair examples

Examples

A associative k-algebra, $\mathfrak{A}=\operatorname{Mat}_{n}(A)$, so $(\mathfrak{A}, \mathfrak{A})$ Jordan pair with $Q_{x} y=x y x$. Subpair $\mathbb{M}_{p q}(A)=\left(\operatorname{Mat}_{p q}(A), \operatorname{Mat}_{q p}(A)\right)$,

$$
\left(\begin{array}{cc}
0 & \operatorname{Mat}_{p q}(A) \\
\operatorname{Mat}_{q p}(A) & 0
\end{array}\right) \subset \quad \operatorname{Mat}_{p+q}(A)
$$

since $(p \times q) \cdot(q \times p) \cdot(p \times q)=(p \times q)$.
other subpairs: symmetric, hermitian, alternating matrices

Root graded Jordan pairs

V Jordan pair, $\quad\left(R, R_{1}\right)$ 3-graded locally finite root system Grosso modo: $\left(R, R_{1}\right)$-grading $=$ grading by $\operatorname{span}_{\mathbb{Z}} R \subset X$, support in $R_{1} \cup R_{-1}$ $\left(R, R_{1}\right)$-grading of V is a decomposition $V^{\sigma}=\bigoplus_{\alpha \in R_{1}} V_{\alpha}^{\sigma}, \sigma= \pm$, satisfying (RG1) and (RG2):

$$
\begin{align*}
Q\left(V_{\alpha}^{\sigma}\right) V_{\beta}^{-\sigma} \subset V_{2 \alpha-\beta}^{\sigma}, & & \left\{V_{\alpha}^{\sigma} V_{\beta}^{-\sigma} V_{\gamma}^{\sigma}\right\} \subset V_{\alpha-\beta+\gamma}^{\sigma}, \tag{RG1}\\
\left\{V_{\alpha}^{\sigma} V_{\beta}^{-\sigma} V^{\sigma}\right\}=0 & & \text { if } \alpha \perp \beta . \tag{RG2}
\end{align*}
$$

Notation $\mathfrak{R}=\left(V_{\alpha}\right)_{\alpha \in R_{1}}$

Root graded Jordan pairs II

Example (Idempotents)

V Jordan pair over ring $k, e=\left(e_{+}, e_{-}\right) \in V$ with $e=\left(Q_{e_{+}}\left(e_{-}\right), Q_{e_{-}}\left(e_{+}\right)\right)$
Peirce decomposition

$$
\begin{array}{rlrl}
V^{\sigma} & =V_{2}^{\sigma}(e) \oplus V_{1}^{\sigma}(e) \oplus V_{0}^{\sigma}(e), & \sigma= \pm, \\
V_{i}^{\sigma}(e) & =\left\{x \in V^{\sigma}:\left\{e^{\sigma} e^{-\sigma} x\right\}=i x\right\}, & i & =0,1,2 \quad(\text { if } 1 / 2 \in k) .
\end{array}
$$

The $V_{i}^{ \pm}=V_{i}^{ \pm}(e)$ satisfy

$$
\begin{aligned}
Q\left(V_{i}^{\sigma}\right) V_{j}^{-\sigma} & \subset V_{2 i-j}^{\sigma}, & \left\{V_{i}^{\sigma} V_{j}^{-\sigma} V_{l}^{\sigma}\right\} \subset V_{i-j+1}^{\sigma}, \\
\left\{V_{2}^{\sigma} V_{0}^{-\sigma} V^{\sigma}\right\} & =0=\left\{V_{0}^{\sigma} V_{2}^{-\sigma} V^{\sigma}\right\}, &
\end{aligned}
$$

where $i, j, I \in\{0,1,2\}, V_{m}^{\sigma}=0$ if $m \notin\{0,1,2\}$.
Root-grading by $R=\mathrm{C}_{2}=\left\{ \pm \epsilon_{i} \pm \epsilon_{j}: i, j \in\{0,1\}\right\}, \quad R_{1}=\left\{\epsilon_{i}+\epsilon_{j}: i, j \in I\right\}$,

$$
V_{\alpha}^{\sigma}=V_{i+j}^{\sigma}(e), \quad\left(\alpha=\epsilon_{i}+\epsilon_{j} \in R_{1}\right)
$$

Fully idempotent root gradings

V Jordan pair, root grading $\mathfrak{R}=\left(V_{\alpha}\right)_{\alpha \in R_{1}}$ of type $\left(R, R_{1}\right)$ Recall $(\alpha, \beta \in R):\left\langle\alpha, \beta^{\vee}\right\rangle=\beta^{\vee}(\alpha) \in \mathbb{Z}, \quad \alpha, \beta \in R_{1}:\left\langle\alpha, \beta^{\vee}\right\rangle \in\{0,1,2\}$,
Fully idempotent root grading \mathfrak{R} : every $V_{\alpha}, \alpha \in R_{1}$, contains idempotent e_{α} such that for all $\beta \in R_{1}$

$$
V_{\beta}=\bigcap_{\alpha \in R_{1}} V_{\left\langle\beta, \alpha^{\vee}\right\rangle}\left(e_{\alpha}\right)
$$

Classification: N 1987

Example

A associative k-algebra, $\mathbb{M}_{p q}(A)=\left(\operatorname{Mat}_{p q}(A), \operatorname{Mat}_{q p}(A)\right), Q_{x} y=x y x$, $V^{+}=\operatorname{Mat}_{p q}(A)=\bigoplus_{1 \leq i \leq p, 1 \leq j \leq q} A E_{i j}, E_{i j}=$ matrix units
$R=\mathrm{A}_{p+q-1}, R_{1}=\left\{\epsilon_{i}-\epsilon_{p+j}: 1 \leq i \leq p, 1 \leq j \leq q\right\}$
$\mathfrak{R}=\left(V_{\alpha}\right)_{\alpha \in R_{1}}, \quad V_{\epsilon_{i}-\epsilon_{p+j}}=\left(A E_{i j}, A E_{j i}\right) \quad$ fully idempotent root grading

Recall

We now know the assumptions of

Theorem (Loos-N)

Assume
(i) $\left(R, R_{1}\right)$ be a locally finite irreducible 3-graded root system of rank ≥ 5,
(ii) V a Jordan pair with a fully idempotent root grading \mathfrak{R}.

Then
(a) the Steinberg group $\operatorname{St}(V, \mathfrak{R})$ is centrally closed.

Steinberg group $\operatorname{St}(V)$

Definition (Steinberg group $\operatorname{St}(V, \mathfrak{R})$)

(R, R_{1}) 3-graded root system,
V Jordan pair with root grading $\Re=\left(V_{\alpha}\right)_{\alpha \in R_{1}}$, not necessarily idempotent. Steinberg group $\operatorname{St}(V, \Re)$ defined by presentation:

- generators $\mathrm{x}_{+}(u), \mathrm{x}_{-}(v),(u, v) \in\left(V^{+}, V^{-}\right)$;
- relations

$$
\begin{aligned}
& \mathrm{x}_{\sigma}\left(u+u^{\prime}\right)=\mathrm{x}_{\sigma}(u) \mathrm{x}_{\sigma}\left(u^{\prime}\right) \quad \text { for } u, u^{\prime} \in V^{\sigma}, \\
& {\left[\mathrm{x}_{+}(u), \mathrm{x}_{-}(v)\right]=1 \quad \text { for }(u, v) \in V_{\alpha}^{+} \times V_{\beta}^{-}, \alpha \perp \beta,} \\
& \begin{cases}{\left[\mathrm{b}(u, v), \mathrm{x}_{+}(z)\right]=\mathrm{x}_{+}\left(-\{u v z\}+Q_{u} Q_{v} z\right),} \\
{\left[\mathrm{b}(u, v)^{-1}, \mathrm{x}_{-}(y)\right]=\mathrm{x}_{-}\left(-\{v u y\}+Q_{v} Q_{u} y\right)}\end{cases} \\
& \quad \text { for all }(u, v) \in V_{\alpha}^{+} \times V_{\beta}^{-} \text {with } \alpha \neq \beta \text { and all }(z, y) \in V .
\end{aligned}
$$

where for $\alpha \neq \beta \in R_{1},(u, v) \in V_{\alpha}^{+} \times V_{\beta}^{-}$define Bergmann operators $\mathrm{b}(u, v)$ by

$$
\mathrm{x}_{+}(u) \mathrm{x}_{-}(v)=\mathrm{x}_{-}\left(v+Q_{v} u\right) \mathrm{b}(u, v) \mathrm{x}_{+}\left(u+Q_{u} v\right)
$$

Steinberg group example

$R=\mathrm{A}_{n-1}, n=p+q \geq 5, R_{1}=\left\{\epsilon_{i}-\epsilon_{p+j}: 1 \leq i \leq p, 1 \leq j \leq q\right\}$
$V=\mathbb{M}_{p q}(A)=\left(\operatorname{Mat}_{p q}(A), \operatorname{Mat}_{q p}(A)\right)$ Jordan pair $\{u v z\}=u v z+z v u$
fully idempotent root grading \mathfrak{R} with $V_{\epsilon_{i}-\epsilon_{p+j}}=\left(A E_{i j}, A E_{j i}\right)$,
The Steinberg group $\operatorname{St}(V, \mathfrak{R})$ is the group presented by

- generators $\mathrm{x}_{+}(u), u \in V^{+}$, and $\mathrm{x}_{-}(v), v \in V^{-}$, and
- the relations

$$
\begin{align*}
& \mathrm{x}_{\sigma}\left(u+u^{\prime}\right)=\mathrm{x}_{\sigma}(u) \mathrm{x}_{\sigma}\left(u^{\prime}\right) \text { for } u, u^{\prime} \in V^{\sigma}, \tag{St1}\\
& {\left[\mathrm{x}_{+}(u), \mathrm{x}_{-}(v)\right]=1 \quad \text { for }(u, v) \in V_{\alpha}^{+} \times V_{\beta}^{-}, \alpha \perp \beta,} \tag{St2}\\
& {\left[\left[\mathrm{x}_{\sigma}(u), \mathrm{x}_{-\sigma}(v)\right], \mathrm{x}_{-}(z)\right]=\mathrm{x}_{\sigma}(-\{u v z\})} \tag{St3}\\
& \quad \text { for } u_{\alpha} \in V_{\alpha}^{\sigma}, v \in V_{\beta}^{-\sigma}, z \in V^{\sigma} \text { with }\left\langle\alpha, \beta^{v}\right\rangle=1=\left\langle\beta, \alpha^{v}\right\rangle .
\end{align*}
$$

Proposition

For (V, \mathfrak{R}) as above, $\operatorname{St}(V, \mathfrak{R}) \cong \operatorname{St}_{n}(A)$.
Hence $\mathrm{St}_{n}(A)$ is centrally closed (Part (a) of Kervaire-Milnor-Steinberg Theorem)

Tits-Kantor-Koecher algebra

Recall part (b) of Loos-N-Theorem:
"If the canonical map $\operatorname{St}(V, \mathfrak{R}) \rightarrow \mathrm{PE}(V)$ is a central extension, then it is a universal central extension. This is so, if rank $R=\infty$."
V Jordan pair over commutative ring k
Tits-Kantor-Koecher algebra of V is \mathbb{Z}-graded Lie k-algebra

$$
\begin{aligned}
\mathfrak{L}(V) & =\mathfrak{L}(V)_{1} \oplus \mathfrak{L}(V)_{0} \oplus \mathfrak{L}(V)_{-1}, \\
\mathfrak{L}(V)_{0} & =k \zeta+\operatorname{span}_{k}\{\delta(x, y):(x, y) \in V\}, \quad \zeta=\left(\operatorname{ld}_{V^{+}}, \operatorname{Id}_{V^{-}}\right) \\
\delta(x, y) & =(D(x, y),-D(y, x)) \in \operatorname{End}\left(V^{+}\right) \times \operatorname{End}\left(V^{-}\right), \quad D(x, y) z=\{x y z\}
\end{aligned}
$$

Lie algebra product of $\mathfrak{L}(V)$ determined by

$$
\begin{aligned}
\mathfrak{L}(V)_{0} & =\text { subalgebra of } \mathfrak{g l}\left(V^{+}\right) \times \mathfrak{g l}\left(V^{-}\right), \\
{\left[V^{\sigma}, V^{\sigma}\right] } & =0, \quad[D, z]=D_{\sigma}(z), \quad[x, y]=-\delta(x, y)
\end{aligned}
$$

Example $V=\mathbb{M}_{p q}(A)$

$$
\begin{aligned}
V & =\mathbb{M}_{p q}(A)=\left(\operatorname{Mat}_{p q}(A), \operatorname{Mat}_{q p}(A)\right) \\
\operatorname{Mat}_{n n}(A) & =\left(\begin{array}{cc}
\operatorname{Mat}_{p p}(A) & \operatorname{Mat}_{p q}(A) \\
\operatorname{Mat}_{q p}(A) & \operatorname{Mat}_{q q}(A)
\end{array}\right) \\
e_{1} & =\left(\begin{array}{cc}
\mathbf{1}_{p} & 0 \\
0 & 0
\end{array}\right), \quad e_{2}=\left(\begin{array}{cc}
0 & 0 \\
0 & \mathbf{1}_{q}
\end{array}\right)
\end{aligned}
$$

$\operatorname{Mat}_{n n}(A)^{(-)}$associated Lie algebra: $[x, y]=x y-y x$
$\mathfrak{e}=$ subalgebra of $\operatorname{Mat}_{n n}(A)^{(-)}$generated by e_{1}, e_{2} and $V, \mathfrak{z}(\mathfrak{e})=$ centre of \mathfrak{e}

$$
\mathfrak{e} / \mathfrak{z}(\mathfrak{e}) \cong \mathfrak{L}(V)
$$

Example

$A=K$ field of characteristic $0, \mathfrak{e}=\mathfrak{g l}_{n}(K), \mathfrak{L}(V) \cong \mathfrak{s l}_{n}(K)$

Projective elementary group $\mathrm{PE}(V)$

Recall: Jordan pair $V, Q_{x} y$
Tits-Kantor-Koecher $\mathfrak{L}(V)=\mathfrak{L}(V)_{1} \oplus \mathfrak{L}(V)_{0} \oplus \mathfrak{L}(V)_{-1}$
For $(x, y) \in V:(\operatorname{ad} x)^{3}=0$, so

$$
\begin{aligned}
& \exp _{+}(x)=\operatorname{Id}+\operatorname{ad} x+\frac{1}{2}(\operatorname{ad} x)^{2}=\left(\begin{array}{ccc}
1 & \operatorname{ad} x & Q_{x} \\
0 & 1 & \operatorname{ad} x \\
0 & 0 & 1
\end{array}\right), \\
& \exp _{-}(y)=\operatorname{Id}+\operatorname{ad} y+\frac{1}{2}(\operatorname{ad} y)^{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\operatorname{ad} y & 1 & 0 \\
Q_{y} & \operatorname{ad} y & 1
\end{array}\right) .
\end{aligned}
$$

Define

$$
\operatorname{PE}(V)=\left\langle\exp _{+}(x), \exp _{-}(y):(x, y) \in V\right\rangle \subset \operatorname{Aut}(\mathfrak{L}(V))
$$

Example

V finite-dimension Jordan pair over $k=\bar{k}$ algebraically closed field: $\operatorname{PE}(V)$ simple algebraic group of adjoint type and root system $\neq \mathrm{G}_{2}, \mathrm{~F}_{4}, \mathrm{E}_{8}$, and conversely ... (scheme version available too).

Example $V=\mathbb{M}_{p q}(A)=\left(\operatorname{Mat}_{p q}(A)\right.$, $\left.\operatorname{Mat}_{q p}(A)\right)$

Elementary group $\mathrm{E}(V)$ and projective elementary group $\mathrm{PE}(V)$ of V :

$$
\begin{aligned}
\mathrm{E}(V) & =\left\langle\left(\begin{array}{cc}
\mathbf{1}_{p} & \operatorname{Mat}_{p q}(A) \\
0 & \mathbf{1}_{q}
\end{array}\right) \cup\left(\begin{array}{cc}
\mathbf{1}_{p} & 0 \\
\operatorname{Mat}_{q p}(A) & \mathbf{1}_{q}
\end{array}\right)\right\rangle \subset \mathrm{GL}_{n}(A) \\
\operatorname{PE}(V) & \cong \mathrm{E}(V) / \mathrm{Z}(\mathrm{E}(V))
\end{aligned}
$$

Part (b) of Loos-N-Theorem:
If the canonical map $\mathrm{St}_{n}(A) \rightarrow \mathrm{PE}(V)$ is a cental extension, then it is a universal central extension. This is so in the the stable case.
Equivalent to part (b) of Kervaire-Milnor-Steinberg Theorem

Example

$A=K=\bar{K}$ algebraically closed field: $\mathrm{PE}(V) \cong \mathrm{PGL}_{n}(K)$.

Open problems: low ranks

J Jordan division algebra, e.g. $J=A, A$ associative division algebra, $U_{a} b=a b a$ $V=(J, J)$ Jordan pair with fully idempotent root grading of type $R=\mathrm{A}_{1}, R_{1}=\{\alpha\}, V_{\alpha}^{\sigma}=J$

Definition (Steinberg group $\operatorname{St}(J)$)

Notation of above. Steinberg group $\operatorname{St}(J)$ presented by

- generators $\mathrm{x}_{+}(u), \mathrm{x}_{-}(v), u, v \in J$; define Weyl $\mathrm{w}_{b}=\mathrm{x}_{-}\left(b^{-1}\right) \mathrm{x}_{+}(b) \mathrm{x}_{-}\left(b^{-1}\right)$ for $0 \neq b \in J$,
- relations

$$
\begin{array}{lr}
\mathrm{x}_{\sigma}\left(u+u^{\prime}\right)=\mathrm{x}_{\sigma}(u) \mathrm{x}_{\sigma}\left(u^{\prime}\right) & \text { for } u, u^{\prime} \in V^{\sigma}, \\
\mathrm{w}_{b} \mathrm{x}_{-}(a) \mathrm{w}_{b}^{-1}=\mathrm{x}_{+}(U(b) a) & (a \in J, 0 \neq b \in J .) \tag{StJ2}
\end{array}
$$

Question: Is $\operatorname{St}(J)$ centrally closed whenever $J \neq \mathbb{F}_{q}$ with $q \in\{2,3,4,9\}$? Answer by Steinberg: Yes, if A is a field.

